Posted 25 September 2009 - 09:02 AM
Paty:
You have received four responses to your query. I have designed, built, and operated adsorption units in the past and I disagree with this post on various points. You are posting in what is supposed to be an industrial, professional forum, and not a student-level forum. Yet you state that you are “working in a molecular sieves design” and don’t know how to decide how many adsorption towers to use. This is not what occurs at an industrial-level of process design. What normally occurs is that an experienced, knowledgeable process engineer is assigned to such a project. What is even more confusing is that you don’t tell us WHAT you are adsorbing. Is it water vapor (i.e., are you drying natural gas?) or are you selectively removing certain molecules – such as CO2, H2S – or perhaps purifying the natural gas stream itself for removal of certain components or recovery? This type of information should not be left to anybody’s guess.
Fallah´s response is one that makes the most sense because it reveals real-life adsorption applications - but even he is forced to guess at what you are trying to do. He, like the other responses, also guesses that you are drying the natural gas. But you should be SPECIFIC and detailed in your request. If you are a student, then I can understand your basic mistakes in communicating; but then, again, you should post your query in the student Forum.
If you are a professional engineer and you have been assigned to design an adsorption unit without any previous experience or knowledge, then you are potentially going towards failure in your assignment – but not because it is your fault. I would fault your supervisor for assigning such a specialized design to someone who is lacking in hands-on experience in this design assignment.
The basis of any adsorption unit is primarily dependent on WHAT you are trying to remove and under what operating conditions. Even a common and ordinary Unit Operation such as water removal (“drying”) is subject to a variety of key decisions in planning the basic design and operation. For example, if you are indeed simply drying natural gas, it makes a world of difference whether the drying is meant to remove water down to a level of ½ PPM(V) in order to subsequently liquefy the product. This would constitute a typical LNG process plant and one that is so dependent on cash flow and capital intensive that it behooves the designer to always consider safeguards against any potential off-spec product that could conceivably shut down the LNG liquefaction facilities due to a freeze up downstream. This simply is not acceptable and, in that case, the process design incorporates a number of towers with the capability of ensuring that a moisture break-through doesn’t happen.
On the other hand, if you are simply conditioning natural gas for pipeline service (7 lbs water/MM Scf), you have a totally different scope of work and a different design scenario. I would use a 2-tower design as has always been the case for this simple (and relatively benign) application.
As Fallah has inferred, you must be prepared to economically justify any adsorption tower over and above the basic two vessels required. If your scope of work dictates that you require the flexibility and added security of operation, then you should follow those concepts and design accordingly. Otherwise, I would stick with the basic, 2-tower design. I have designed and employed the 2-tower design for drying 3,000 psig air down to less than 1.0 PPM(V) of water as feed for air separation plants operating 24 hours a day for over a year in continuous service – and they performed just as I designed them to work. No one designs an adsorption unit for break-through of the adsorbed compound. This is something that is simply not allowable for an operation where it is vital to maintain a constant product purity.